Jaya Krishna Koneru, Suman Sinha, and Jagannath Mondal (2021).
The Journal of biological chemistry, 297, 101271.   (PubMed)

The recognition of carbohydrates by lectins plays key roles in diverse cellular processes such as cellular adhesion, proliferation, and apoptosis, which makes it a therapeutic target of significance against cancers. One of the most functionally active lectins, galectin-3 is distinctively known for its specific binding affinity toward β-galactoside. However, despite the prevalence of high-resolution crystallographic structures, the mechanistic basis and more significantly, the dynamic process underlying carbohydrate recognition by galectin-3 are currently elusive. To this end, we employed extensive Molecular Dynamics simulations to unravel the complete binding event of human galectin-3 with its native natural ligand N-acetyllactosamine (LacNAc) at atomic precision. The simulation trajectory demonstrates that the oligosaccharide diffuses around the protein and eventually identifies and binds to the biologically designated binding site of galectin-3 in real time. The simulated bound pose correlates with the crystallographic pose with atomic-level accuracy and recapitulates the signature stabilizing galectin-3/oligosaccharide interactions. The recognition pathway also reveals a set of transient non-native ligand poses in its course to the receptor. Interestingly, kinetic analysis in combination with a residue-level picture revealed that the key to the efficacy of a more active structural variant of the LacNAc lay in the ligand's resilience against disassociation from galectin-3. By catching the ligand in the act of finding its target, our investigations elucidate the detailed recognition mechanism of the carbohydrate-binding domain of galectin-3 and underscore the importance of ligand-target binary complex residence time in understanding the structure-activity relationship of cognate ligands.

This example uses the following methods: